Datasets
Standard Dataset
Anatomical and molecular data of Crassostrea collected on Rio Grande do Sul, Brazil
- Citation Author(s):
- Submitted by:
- Joao Ferreira
- Last updated:
- Fri, 01/03/2025 - 09:55
- DOI:
- 10.21227/e6w1-zf52
- Data Format:
- License:
- Categories:
- Keywords:
Abstract
This dataset contains the continuous and discrete anatomical data of Crassostrea rhizophorae and C. gasar which were measured after the specimens' identification through polymerase chain reaction-restriction fragment length polymorphism analysis and mitochondrial rDNA sequencing of the 16S rRNA. Based on the molecular identity of the specimens, a comparative anatomical assessment of the size of the mantle, size of the labial palps, shape of the accessory heart, shape of the heart, shape of the anus, and the pattern of tentacles on the edge of the mantle was conducted in Rstudio program. Data related to the anatomy of the species are plastic and are incapable of generating specific criteria for the identification of C. gasar and C. rhizophorae.
The molecular data is in .txt format:
You must convert the sequence data in .fasta using the Bioedit program version 7.2.5
Now, you open the file in Mega11 program to conduct the molecular analysis
>Choose Analyse> Nucleotide Sequences> Confirm that data corresponds to Protein-coding nucleotide sequence data
Click on Phylogeny> Construct Neighbor-Joining tree and apply the following configurations before the construction of the tree:
Bootstrap method = 1000 replicates
Method = Kimura 2-parameter model
After constructing the Neighbor-Joining tree, right-click on the branch clade containing both Saccostrea and Ostrea sequences and click on the option Root the clade
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The anatomical data was converted from an Excel archive named "Data.xlsx".
You need to convert the pdf data into Excel data prior its usage on Rstudio for statistical analysis.
After the Excel data is imported into Rstudio, apply the following steps on the Console channel to conduct the same statistical analysis provided for "Identity of Crassostrea praia (Ihering, 1907) and other oysters from Rio Grande do Sul, Brazil":
#packages used#
library("FSA")
library("rstatix")
require("agricolae")
library("ggplot2")
library("qqplotr")
library("dplyr")
library("DescTools")
library("FSA")
library("PMCMRplus")
library("vcd")
library("ggstatsplot")
library("MKinfer")
library("ggplot2")
#data summon#
library(readxl)
Data <- read_excel("cap2 doc/Para submissão/Data.xlsx")
View(Data)
#continuous data#
#Mantle Height#
Mant_h <- aov(Data$Mantle_height ~ Data$Species)
summary(Mant_h)
shapiro.test(residuals(Mant_h))
bartlett.test(Data$Mantle_height ~ Data$Species)
perm.t.test(Mantle_height ~Species, data = Data)
#Mantle length#
Mant_l <- aov(Data$Mantle_length ~ Data$Species)
summary(Mant_l)
shapiro.test(residuals(Mant_l))
bartlett.test(Data$Mantle_length ~ Data$Species)
perm.t.test(Mantle_length ~Species, data = Data)
#Labial palps#
LP <- aov(Data$Labial_palps_height ~ Data$Species)
summary(LP)
shapiro.test(residuals(LP))
bartlett.test(Data$Labial_palps_height ~ Data$Species)
perm.t.test(Labial_palps_height ~Species, data = Data)
#Anus format#
chisq.test(Data$Anus_format, Data$Species)
ggbarstats(data = Data, x = Anus_format, y = Species,
bf.message = FALSE)
#Accessory heart form#
chisq.test(Data$Accessory_heart, Data$Species)
ggbarstats(data = Data, x = Accessory_heart, y = Species,
bf.message = FALSE)
#pattern of tentacles of middle mantle margin#
chisq.test(Data$Pattern_of_middle_mantle_tentacles, Data$Species)
ggbarstats(data = Data, x = Pattern_of_middle_mantle_tentacles, y = Species,
bf.message = FALSE)
#Correlation between ventricle, atrium formats and species#
Heart = mosaic(~ Species + Heart_ventricle_format + Heart_atrium_format,
data = Data,
shade = TRUE,
labeling_args = list(rot_labels = c(right = 0),
set_varnames = c(Heart_ventricle_format = "Ventricle",
Heart_atrium_format = "Atrium"),
abbreviate_labs = c(Heart_atrium_format = 3)),
gp_labels = gpar(fontsize = 10, fontface = 3))