The paper presented by Samar Mahmoud; and Yasmine Arafaf et, al a novel dataset called the "Abnormal High-Density Crowd Dataset," addresses the challenge of anomaly detection in crowded environments, particularly focusing on high-density crowds—an area that has received limited exploration in computer vision and crowd behaviour understanding. The dataset is introduced with considerations for privacy, annotation accuracy, and preprocessing.
The "Queue Waiting Time Dataset" is a detailed collection of information that records the movement of waiting times in queues. This dataset contains important details such as the time of arrival, the start and finish times, the waiting time, and the length of the queue. The arrival time denotes the moment when customers enter the queue, while the start and finish times track the duration of the service process. The waiting time measures the time spent waiting in the queue, and the queue length shows the number of customers in the queue when a new customer arrives.