Real name: 
First Name: 
Nicholas
Last Name: 
Merna

Datasets & Competitions

Vasculargraft failure rates remain unacceptably high due to thrombosis and poor integration, necessitating innovative solutions. This study optimized plant-derived extracellular matrix scaffolds as a scalable and biocompatible alternative to synthetic grafts and autologous vessels. We refined decellularization protocols to achieve >95% DNA removal while preserving mechanical properties comparable to native vessels, significantly enhancing endothelial cell seeding.

Categories:
38 Views

Background: Vascular grafts are mainly composed of synthetic materials, but are prone to thrombosis and intimal hyperplasia at small diameters. Decellularized plant scaffolds have emerged that provide promising alternatives for tissue engineering. We previously developed robust, endothelialized small-diameter vessels from decellularized leatherleaf viburnum. This is the first study to precondition and analyze plant-based vessels under physiological fluid flow and pressure waveforms.

Categories:
154 Views

Despite advances in vascular replacement and repair, fabricating small-diameter vascular grafts with low thrombogenicity and appropriate tissue mechanics remains a challenge. A wide range of platforms have been developed to use plant-derived scaffolds for various applications. Unlike animal tissue, plants are primarily composed of cellulose which can offer a promising, nonthrombogenic alternative capable of promoting cell attachment and redirecting blood flow.

Categories:
201 Views