Real name: 
First Name: 
Last Name: 

Datasets & Competitions

ERA5 derived time series of European country-aggregate electricity demand, wind power generation and solar power generation: hourly data from 1979-2019.  The ERA5 reanalysis data (1979-2019) has been used to calculate the hourly country aggregated wind and solar power generation for 28 European countries based on a distribution of wind and solar farms which is considered to be representative of the 2017 situation. In addition a corresponding daily time series of nationally aggregated electricity demand is provided.


The temporal variability in calving front positions of marine-terminating glaciers permits inference on the frontal ablation. Frontal ablation, the sum of the calving rate and the melt rate at the terminus, significantly contributes to the mass balance of glaciers. Therefore, the glacier area has been declared as an Essential Climate Variable product by the World Meteorological Organization. The presented dataset provides the necessary information for training deep learning techniques to automate the process of calving front delineation.


In the wake of marine oil exploration and transportation, the accidents of oil spills have occurred
frequently around the world, which leads to the severe pollution of the marine environment and the
huge damage of coastal species [1–6]. On April 20, 2010, the explosion of Deepwater Horizon oil
drilling platform led to a severe leakage. Million barrels of oil polluted the Gulf of Mexico with the
area of about 10,000 square kilometers [7, 8]. Due to this accident, the marine ecosystems, such as fish


urrently, a significant amount of research is focused on detecting Marine Debris and assessing its spectral behaviour via remote sensing, ultimately aiming at new operational monitoring solutions. Here, we introduce a Marine Debris Archive (MARIDA), as a benchmark dataset for developing and evaluating Machine Learning (ML) algorithms capable of detecting Marine Debris.


This dataset consists of 3500 images of beach litter and 3500 corresponding pixel-wise labelled images. Although performing such pixel-by-pixel semantic masking is expensive, it allows us to build machine-learning models that can perform more sophisticated automated visual processing. We believe this dataset may be of significance to the scientific communities concerned with marine pollution and computer vision, as this dataset can be used for benchmarking in the tasks involving the evaluation of marine pollution with various machine learning models.


Tree planting has the potential to improve the livelihoods of millions of people as well as to support environmental services such as biodiversity conservation. Planting however needs to be executed wisely if benefits are to be achieved. We have developed the GlobalUsefulNativeTrees (GlobUNT) database to directly support the principles advocated by the ‘golden rules for reforestation’, including planting tree mixtures that maximize the benefits to local livelihoods and the diversity of native trees.