Real name: 
First Name: 
Thomas
Last Name: 
Asikis
Affiliation: 
ETH Zurich
Job Title: 
PhD Student
Expertise: 
Deep Learning and Computational Social Science

Datasets & Competitions

We study the ability of neural networks to steer or control trajectories of dynamical systems on graphs, which we represent with neural ordinary differential equations (neural ODEs). To do so, we introduce a neural-ODE control (NODEC) framework and find that it can learn control signals that drive graph dynamical systems into desired target states. While we use loss functions that do not constrain the control energy, our results show that NODEC produces control signals that are highly correlated with optimal (or minimum energy) control signals.

Categories:
770 Views