Embedded devices; fault detection and diagnosis; industrial internet of things; machine learning

Industries transition to the Industry 4.0 paradigm requires solutions based on devices attached to machines that allow monitoring and control of industrial equipment. Monitoring is essential to ensure devices' proper operation against different aggressions. We propose a novel approach to detect and classify faults, that are typical in these devices, based on machine learning techniques that use as features the energy, the processing, and the time consumed by device main application functionality.

Categories:
892 Views