Image restoration; BPNN optimization; Hybrid GA
This dataset consists of a test result dataset with 10 sample images and a test result dataset with a artificial image. Backpropagation neural networks (BPNNs) can be used to restore images; however, the error surface of the BPNN algorithm contains several extrema, making it easy to slip into a locally optimal solution. A genetic algorithm (GA) with a strong global searchability can optimize the initial weight and threshold of BPNNs. However, traditional GAs are prone to local convergence and stagnation; hence, we propose a hybrid GA.
- Categories:
273 Views