Deep Reinforcement Learning (DRL)

Integrated Access and Backhaul (IAB) networks

offer a versatile and scalable solution for expanding broadband

coverage in urban environments. However, optimizing the deploy-

ment of IAB nodes to ensure reliable coverage while minimizing

costs poses significant challenges, particularly given the location

constraints and the highly dynamic nature of urban settings. This

work introduces a novel Deep Reinforcement Learning (DRL)

approach for IAB network planning, considering urban con-

Categories:
93 Views

In unmanned aerial vehicle (UAV) enabled mobile edge computing (MEC) system, rotary-wing UAV can be dispatched to fly close to ground terminals (GTs) to execute their offloaded tasks. This can extend GTs’ computing capability and save their energy cost. However, to enhance the energy efficiency of UAV propulsion, ensure successful completion of each GT's mission, and maintain a stable UAV-GT uplinks, it is crucial to design a rational UAV 3D trajectory and mission offloading strategy.

Categories:
127 Views