This dataset was produced as a part of my PhD research on Android malware detection using Multimodal Deep Learning. It contains raw data (DEX grayscale images), static analysis data (Android Intents & Permissions), and dynamic analysis data (system call sequences). For the conference research paper, please refer to https://sbic.org.br/eventos/cbic_2021/cbic2021-32/
Citations:
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Top-1000 imported functions extracted from the 'pe_imports' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Raw PE byte stream rescaled to a 32 x 32 greyscale image using the Nearest Neighbor Interpolation algorithm and then flattened to a 1024 bytes vector. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data (PE Section Headers of the .text, .code and CODE sections) extracted from the 'pe_sections' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
This dataset is part of our research on malware detection and classification using Deep Learning. It contains 42,797 malware API call sequences and 1,079 goodware API call sequences. Each API call sequence is composed of the first 100 non-repeated consecutive API calls associated with the parent process, extracted from the 'calls' elements of Cuckoo Sandbox reports.