Open Access Entries from this Author
Device identification using network traffic analysis is being researched for IoT and non-IoT devices against cyber-attacks. The idea is to define a device specific unique fingerprint by analyzing the solely inter-arrival time (IAT) of packets as feature to identify a device. Deep learning is used on IAT signature for device fingerprinting of 58 non-IoT devices. We observed maximum recall and accuracy of 97.9% and 97.7% to identify device. A comparitive research GTID found using defined IAT signature that models of device identification are better than device type identification.
- Categories:
-
Dataset Entries from this Author
Device Fingerprinting for Access Control over a Campus and Isolated Network
Device Fingerprinting (DFP) is a technique to identify devices using Inter-Arrival Time (IAT) of packets and without using any other unique identifier. Our experiments include generating graphs of IATs of 100 packets and using Convolutional Neural Network on the generated graphs to identify a device. We did two experiments where the first experiment was on Raspberri Pi and other experiment was on crawdad dataset.
First Experiment: Raspberry Pi
- Categories:
-