cleansing data

Several fields of study can benefit from a large, structured, and accurate dataset of historical figures. Due to a lack of such a dataset, in this paper, we aim to use machine learning and text mining models to collect, predict, and cleanse online data with a focus on age and gender. We developed a five-step method and inferred birth and death years, binary gender, and occupation from community-submitted data to all language versions of the Wikipedia project.

Categories:
1156 Views