Whole-Slide Images

Prostate cancer is a major global health challenge. In this study, we present an approach for the detection and grading of prostate cancer through the semantic segmentation of adenocarcinoma tissues, specifically focusing on distinguishing between Gleason patterns 3 and 4. Our method leverages deep learning techniques to improve diagnostic accuracy and enhance patient treatment strategies. We developed a new dataset comprising 100 digitized whole-slide images of prostate needle core biopsy specimens, which are publicly available for research purposes.

Categories:
641 Views