Skip to main content

Amazon

Graph Neural Networks (GNNs) have become the predominant approach for graph fraud detection due to their intrinsic capability to handle graph-structured data and effectively capture complex relational patterns in fraudulent behaviors. However, existing GNN-based graph fraud detection models face limitations: homophily-based models struggle with handling heterogeneous relationships in fraud graphs, while heterophily-based models typically model only a single attribute- or structural-space, leading to constrained detection performance.

Categories: