As with most AI methods, a 3D deep neural network needs to be trained to properly interpret its input data. More specifically, training a network for monocular 3D point cloud reconstruction requires a large set of recognized high-quality data which can be challenging to obtain. Hence, this dataset contains the image of a known object alongside its corresponding 3D point cloud representation. To collect a large number of categorized 3D objects, we use the ShapeNetCore (https://shapenet.org) dataset.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] AmirHossein Zamani, "Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL)", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/d9ft-0n41. Accessed: Jan. 20, 2025.
@data{d9ft-0n41-24,
doi = {10.21227/d9ft-0n41},
url = {http://dx.doi.org/10.21227/d9ft-0n41},
author = {AmirHossein Zamani },
publisher = {IEEE Dataport},
title = {Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL)},
year = {2024} }
TY - DATA
T1 - Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL)
AU - AmirHossein Zamani
PY - 2024
PB - IEEE Dataport
UR - 10.21227/d9ft-0n41
ER -
AmirHossein Zamani. (2024). Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL). IEEE Dataport. http://dx.doi.org/10.21227/d9ft-0n41
AmirHossein Zamani, 2024. Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL). Available at: http://dx.doi.org/10.21227/d9ft-0n41.
AmirHossein Zamani. (2024). "Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL)." Web.
1. AmirHossein Zamani. Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL) [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/d9ft-0n41
AmirHossein Zamani. "Monocular 3D Point Cloud Reconstruction Dataset (Mono3DPCL)." doi: 10.21227/d9ft-0n41