Hardware illustration video for the paper entitled Explainable Neural Dynamics Models for Motor Temperature Prediction

Citation Author(s):
Shuai
Zhao
Aalborg University
Submitted by:
Shuai Zhao
Last updated:
Tue, 11/07/2023 - 16:02
DOI:
10.21227/2rax-8c51
Data Format:
License:
0
0 ratings - Please login to submit your rating.

Abstract 

This is the hardware demonstration video for the paper entitled Explainable Neural Dynamics Models for Motor Temperature Prediction. Below is the abstract.

Accurate temperature prediction of the permanent magnet synchronous motor serves as the fundamental basis for designing effective thermal management strategies. Model-based prediction methods exhibit superior real-time performance, but the intricate modeling process requires substantial expert knowledge guidance and lacks versatility. Conversely, data-driven prediction methods, while offering flexibility, often lack physical implications in terms of system dynamics. This paper proposed a structured linear neural dynamics model for motor temperature prediction. This model is data-driven, with prior knowledge integrated into its structure, which preserves flexibility while guaranteeing system stability through the Perron-Frobenius theorem. Additionally, this paper achieves the decoupling of control input from state transitions and the embedded deployment of this model. The method is validated with a real dataset. The lightweight feature is demonstrated by the implementation of an STM32 Microcontroller with 1.808 KB and 27 mW.

Instructions: 

Just click the video.