mtx

Sparse triangular solves (SpTRSVs) are widely used in linear algebra domains, and several GPU-based SpTRSV algorithms have been developed. Synchronization-free SpTRSVs, due to their short preprocessing time and high performance, are currently the most popular SpTRSV algorithms. However, we observe that the performance of those SpTRSV algorithms on different matrices can vary greatly by 845 times. Our further studies show that when the average number of components per level is high and the average number of nonzero elements per row is low, those SpTRSVs exhibit extremely low performance.

Categories:
84 Views