Real name: 
Congratulations!  You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
First Name: 
Last Name: 

Datasets & Competitions

The Widar3.0 project is a large dataset designed for use in WiFi-based hand gesture recognition. The RF data are collected from commodity WiFi NICs in the form of Received Signal Strength Indicator (RSSI) and Channel State Information (CSI). The dataset consists of 258K instances of hand gestures with a duration of totally 8,620 minutes and from 75 domains. In addition, two sophisticated features from raw RF signal, including Doppler Frequency Shift (DFS) and a new feature Body-coordinate Velocity Profile (BVP) are included.