Text classification systems have become increasingly important in recent years due to the explosion of online documents and the need to sort them for specific services. One of the most critical issues in text classification is the limited availability and diversity of datasets, which can lead to overfitting and poor generalization. In this context, we present a new dataset named Global News 60K (GN60K), which consists of 60,000 news articles from different sources from different parts of the world, covering 10 topics.