Real name: 
Congratulations!  You have been automatically subscribed to IEEE DataPort and can access all datasets on IEEE DataPort!
First Name: 
Last Name: 

Datasets & Competitions

Algorithms that adjust the reactive power injection of converter-connected RES to minimize losses may compromise the converters’ fault-ride-through capability. This can become crucial for the reliable operation of the distribution grids, as they could lose valuable resources to support grid voltage at the time they need them the most. This paper explores how two novel loss-minimizing algorithms can both achieve high reduction of the system losses during normal operation and remain connected to support the voltage during faults.


Distribution grids are experiencing a massive penetration of fluctuating distributed energy resources (DERs). As a result, the real-time efficient and secure operation of distribution grids becomes a paramount problem. While installing smart sensors and enhancing communication infrastructure improves grid observability, it is computationally impossible for the distribution system operator (DSO) to optimize setpoints of millions of DER units.