A Latin square of order q is a q×q array with elements from {0,1,...,q-1} such that each value occurs exactly once in each row and column. Two Latin squares G and L are orthogonal if (G(x,y), L(x,y)) = (u,v) has exactly one solution for each (u,v) from {0,1,...,q-1}×{0,1,...,q-1}.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Vladimir Potapov, "Graeco-Latin cubes", IEEE Dataport, 2020. [Online]. Available: http://dx.doi.org/10.21227/xh3k-pv95. Accessed: Jan. 28, 2025.
@data{xh3k-pv95-20,
doi = {10.21227/xh3k-pv95},
url = {http://dx.doi.org/10.21227/xh3k-pv95},
author = {Vladimir Potapov },
publisher = {IEEE Dataport},
title = {Graeco-Latin cubes},
year = {2020} }
TY - DATA
T1 - Graeco-Latin cubes
AU - Vladimir Potapov
PY - 2020
PB - IEEE Dataport
UR - 10.21227/xh3k-pv95
ER -
Vladimir Potapov. (2020). Graeco-Latin cubes. IEEE Dataport. http://dx.doi.org/10.21227/xh3k-pv95
Vladimir Potapov, 2020. Graeco-Latin cubes. Available at: http://dx.doi.org/10.21227/xh3k-pv95.
Vladimir Potapov. (2020). "Graeco-Latin cubes." Web.
1. Vladimir Potapov. Graeco-Latin cubes [Internet]. IEEE Dataport; 2020. Available from : http://dx.doi.org/10.21227/xh3k-pv95
Vladimir Potapov. "Graeco-Latin cubes." doi: 10.21227/xh3k-pv95