Water supply forecast dataset
![](https://ieee-dataport.org/sites/default/files/styles/3x2/public/tags/images/artificial-intelligence-2167835_1920.jpg?itok=wAd0kf8k)
To promote intelligent water services and accelerate the water industry's modernization process, accurately predicting regional residents' water demand and reducing energy consumption for secondary water supply is a major challenge for scientific scheduling and efficient management of urban water supply. This paper proposes a deep learning-based approach for demand forecasting in residential communities. The approach first identifies and corrects outliers in raw water supply data, and incorporates additional features such as epidemics and meteorological information.
- Categories: