medical image denoising

本文介绍了一种无人监督的医疗 旨在解决高斯-泊松挑战的图像去噪模型 CT、MRI 和 X 射线图像中的混合噪声。传统深度图像先验 (DIP) 使用随机噪声作为网络输入的方法收敛缓慢, 而直接使用观察到的噪点图像通常会导致过度拟合和较差 去噪性能。为了克服这些限制,我们将 frequency 和 用于对观察到的噪声进行多通道处理的空间域信息 图像。然后,特征融合模块集成了两个域的优势, 能够更准确地提取结构信息,显著 提高降噪性能,并加速收敛。此外,我们 引入基于熵的提前停止机制,用于动态监控 训练期间熵的变化,自动停止迭代一次 熵减少并稳定,从而防止过拟合。此外 该模型采用 L1 损失函数,而不是使用的传统 MSE 损失 以更好地保留图像边缘和细节。实验结果表明 所提出的模型具有优势,PSNR 平均增加 10.7%,并且 与 DIP 相比,SSIM 为 17.9%。值得注意的是,到第 60 次迭代时,PSNR 和 所提出的方法的 SSIM 值已经超过了峰值 在第 1,360 次迭代中通过 DIP 实现,在第 2,600 次迭代中由 DIP 变体实现 迭 代。所提出的模型提供了一种高效、稳健和创新的方法 医学影像降噪任务的解决方案。

Categories:
212 Views