Machine Learning

The necessity for strong security measures to fend off cyberattacks has increased due to the growing use of Industrial Internet of Things (IIoT) technologies. This research introduces IoTForge Pro, a comprehensive security testbed designed to generate a diverse and extensive intrusion dataset for IIoT environments. The testbed simulates various IIoT scenarios, incorporating network topologies and communication protocols to create realistic attack vectors and normal traffic patterns.

Categories:
259 Views

Please cite the following paper when using this dataset:

Vanessa Su and Nirmalya Thakur, “COVID-19 on YouTube: A Data-Driven Analysis of Sentiment, Toxicity, and Content Recommendations”, Proceedings of the IEEE 15th Annual Computing and Communication Workshop and Conference 2025, Las Vegas, USA, Jan 06-08, 2025 (Paper accepted for publication, Preprint: https://arxiv.org/abs/2412.17180).

Abstract:

Categories:
118 Views

M. Kacmajor and J.D. Kelleher, "ExTra: Evaluation of Automatically Generated Source Code Using Execution Traces" (submitted to IEEE TSE)

Categories:
20 Views

M. Kacmajor and J.D. Kelleher, "ExTra: Evaluation of Automatically Generated Source Code Using Execution Traces" (submitted to IEEE TSE)

Categories:
41 Views

To provide machine learning and data science experts with a more robust dataset for model training, the well-known Palmer Penguins dataset has been expanded from its original 344 rows to 100,000 rows. This substantial increase was achieved using an adversarial random forest technique, effectively generating additional synthetic data while maintaining key patterns and features. The method achieved an impressive accuracy of 88%, ensuring the expanded dataset remains realistic and suitable for classification tasks.

Categories:
350 Views

Production quality control is an issue of great importance in the industry. Generating defective products leads to wasted time and money. For this reason, we have attempted to develop a production control system using computational artificial intelligence methods. The system, in its current version, has been developed and tested, using the example of controlling the operation of an injection moulding machine producing plastic elements.

Categories:
165 Views

This dataset used in the research paper "JamShield: A Machine Learning Detection System for Over-the-Air Jamming Attacks." The research was conducted by Ioannis Panitsas, Yagmur Yigit, Leandros Tassiulas, Leandros Maglaras, and Berk Canberk from Yale University and Edinburgh Napier University.

For any inquiries, please contact Ioannis Panitsas at ioannis.panitsas@yale.edu.

 

Categories:
237 Views

Results of the Phase 1 - Competition - 11/11/2024

Competition phase of the first cut-off stage is now closed and we have gathered submissions from student, academic and industry teams from 10 countries. Submissions are evaluated and the results of the best performing teams are given below, with individual RMSSE metrics, overall average and final score. We would like to thank everyone for their participation and valuable contributions! The competition will return soon with the new cut-off stage.

Last Updated On: 
Fri, 11/15/2024 - 11:49

Surface electromyography (EMG) can be used to interact with and control robots via intent recognition. However, most machine learning algorithms used to decode EMG signals have been trained on small datasets with limited subjects, impacting their generalization across different users and tasks. Here we developed EMGNet, a large-scale dataset for EMG neural decoding of human movements. EMGNet combines 7 open-source datasets with processed EMG signals for 132 healthy subjects (152 GB total size).

Categories:
1205 Views

Pages