
Graph neural networks (GNNs) are widely applied in graph data modeling. However, existing GNNs are often trained in a task-driven manner that fails to fully capture the intrinsic nature of the graph structure, resulting in sub-optimal node and graph representations. To address this limitation, we propose a novel \textbf{G}raph structure \textbf{P}rompt \textbf{L}earning method (GPL) to enhance the training of GNNs, which is inspired by prompt mechanisms in natural language processing.
- Categories: