Skip to main content

Code search

Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes.

Categories:

Code search is essential for code reuse, allowing developers to efficiently locate relevant code snippets. Traditional encoder-based models, however, face challenges with poor generalization and input length limitations. In contrast, decoder-only large language models (LLMs), with their larger size, extensive pre-training, and ability to handle longer inputs, present a promising solution to these issues. However, their effectiveness in code search has not been fully explored.

Categories: