Blur detection and classification

Surveillance videos taken in unconstrained environments can be tampered with due to different environmental factors and malicious human activities. They often blur the video content and introduce difficulty in identifying the events in the scene. The problem is particularly acute for smart surveillance systems that need to make real-time decisions based on the video. Automatic detection of the blur anomalies in the video is crucial to these systems. In this research, a learning-based approach for camera blur detection is proposed.

Categories:
678 Views