To solve the problem of accurate recognition and picking of tea by tea picking robot, this study proposes a S-YOLOv10-SIC algorithm that integrates slice-assisted hyper-inference algorithm. This algorithm enhances the YOLOv10 network by introducing Space-to-Depth Convolution, asymptotic feature pyramid network, and Inner-IoU. These improvements reduce the loss of detailed information in long-distance and low-resolution images, improve key layer saliency, optimize non-adjacent layer fusion, enhance model convergence speed, and increase model universality.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Wang Baijuan, Zhang Shihao, "S-YOLOv10-SIC", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/48v5-6x60. Accessed: Dec. 26, 2024.
@data{48v5-6x60-24,
doi = {10.21227/48v5-6x60},
url = {http://dx.doi.org/10.21227/48v5-6x60},
author = {Wang Baijuan; Zhang Shihao },
publisher = {IEEE Dataport},
title = {S-YOLOv10-SIC},
year = {2024} }
TY - DATA
T1 - S-YOLOv10-SIC
AU - Wang Baijuan; Zhang Shihao
PY - 2024
PB - IEEE Dataport
UR - 10.21227/48v5-6x60
ER -
Wang Baijuan, Zhang Shihao. (2024). S-YOLOv10-SIC. IEEE Dataport. http://dx.doi.org/10.21227/48v5-6x60
Wang Baijuan, Zhang Shihao, 2024. S-YOLOv10-SIC. Available at: http://dx.doi.org/10.21227/48v5-6x60.
Wang Baijuan, Zhang Shihao. (2024). "S-YOLOv10-SIC." Web.
1. Wang Baijuan, Zhang Shihao. S-YOLOv10-SIC [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/48v5-6x60
Wang Baijuan, Zhang Shihao. "S-YOLOv10-SIC." doi: 10.21227/48v5-6x60