Optical remote sensing images, with their high spatial resolution and wide coverage, have emerged as invaluable tools for landslide analysis. Visual interpretation and manual delimitation of landslide areas in optical remote sensing images by human is labor intensive and inefficient. Automatic delimitation of landslide areas empowered by deep learning methods has drawn tremendous attention in recent years. Mask R-CNN and U-Net are the two most popular deep learning frameworks for image segmentation in computer vision.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Shengwen Qi, Zan Wang, Bowen Zheng, Yue Yang, Fengjiao Tang, "Qinghai-Tibet Plateau (QTP) Landslides Dataset", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/g6nd-zt37. Accessed: Jan. 13, 2025.
@data{g6nd-zt37-24,
doi = {10.21227/g6nd-zt37},
url = {http://dx.doi.org/10.21227/g6nd-zt37},
author = {Shengwen Qi; Zan Wang; Bowen Zheng; Yue Yang; Fengjiao Tang },
publisher = {IEEE Dataport},
title = {Qinghai-Tibet Plateau (QTP) Landslides Dataset},
year = {2024} }
TY - DATA
T1 - Qinghai-Tibet Plateau (QTP) Landslides Dataset
AU - Shengwen Qi; Zan Wang; Bowen Zheng; Yue Yang; Fengjiao Tang
PY - 2024
PB - IEEE Dataport
UR - 10.21227/g6nd-zt37
ER -
Shengwen Qi, Zan Wang, Bowen Zheng, Yue Yang, Fengjiao Tang. (2024). Qinghai-Tibet Plateau (QTP) Landslides Dataset. IEEE Dataport. http://dx.doi.org/10.21227/g6nd-zt37
Shengwen Qi, Zan Wang, Bowen Zheng, Yue Yang, Fengjiao Tang, 2024. Qinghai-Tibet Plateau (QTP) Landslides Dataset. Available at: http://dx.doi.org/10.21227/g6nd-zt37.
Shengwen Qi, Zan Wang, Bowen Zheng, Yue Yang, Fengjiao Tang. (2024). "Qinghai-Tibet Plateau (QTP) Landslides Dataset." Web.
1. Shengwen Qi, Zan Wang, Bowen Zheng, Yue Yang, Fengjiao Tang. Qinghai-Tibet Plateau (QTP) Landslides Dataset [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/g6nd-zt37
Shengwen Qi, Zan Wang, Bowen Zheng, Yue Yang, Fengjiao Tang. "Qinghai-Tibet Plateau (QTP) Landslides Dataset." doi: 10.21227/g6nd-zt37