AbstractMost reinforcement learning algorithms for robotic arm control in sparse reward environments are primarily optimized for end-effector displacement control mode.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Xingyu Lin, "P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/44k3-n417. Accessed: Feb. 17, 2025.
@data{44k3-n417-24,
doi = {10.21227/44k3-n417},
url = {http://dx.doi.org/10.21227/44k3-n417},
author = {Xingyu Lin },
publisher = {IEEE Dataport},
title = {P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments},
year = {2024} }
TY - DATA
T1 - P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments
AU - Xingyu Lin
PY - 2024
PB - IEEE Dataport
UR - 10.21227/44k3-n417
ER -
Xingyu Lin. (2024). P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments. IEEE Dataport. http://dx.doi.org/10.21227/44k3-n417
Xingyu Lin, 2024. P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments. Available at: http://dx.doi.org/10.21227/44k3-n417.
Xingyu Lin. (2024). "P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments." Web.
1. Xingyu Lin. P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/44k3-n417
Xingyu Lin. "P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments." doi: 10.21227/44k3-n417