[1] Xingyu Lin,
"P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments",
IEEE Dataport,
2024. [Online]. Available: http://dx.doi.org/10.21227/44k3-n417. Accessed: Feb. 17, 2025.
@data{44k3-n417-24,
doi = {10.21227/44k3-n417},
url = {http://dx.doi.org/10.21227/44k3-n417},
author = {Xingyu Lin },
publisher = {IEEE Dataport},
title = {P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments},
year = {2024} }
doi = {10.21227/44k3-n417},
url = {http://dx.doi.org/10.21227/44k3-n417},
author = {Xingyu Lin },
publisher = {IEEE Dataport},
title = {P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments},
year = {2024} }
TY - DATA
T1 - P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments
AU - Xingyu Lin
PY - 2024
PB - IEEE Dataport
UR - 10.21227/44k3-n417
ER -
T1 - P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments
AU - Xingyu Lin
PY - 2024
PB - IEEE Dataport
UR - 10.21227/44k3-n417
ER -
Xingyu Lin.
(2024).
P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments.
IEEE Dataport.
http://dx.doi.org/10.21227/44k3-n417
Xingyu Lin,
2024.
P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments.
Available at:
http://dx.doi.org/10.21227/44k3-n417.
Xingyu Lin.
(2024).
"P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments."
Web.
1. Xingyu Lin.
P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments [Internet].
IEEE Dataport; 2024.
Available from :
http://dx.doi.org/10.21227/44k3-n417
Xingyu Lin.
"P-HER: Self-Guided Reinforcement Learning Framework for Efficient Sequential Manipulation in Sparse Reward Environments."
doi:
10.21227/44k3-n417