eterogeneous graph representation learning is crit-

ical for analyzing complex data structures. Metapaths within this

field are vital as they elucidate high-order relationships across the

graph, significantly enhancing the model’s accuracy and depth of

understanding. However, metapaths tend to prioritize long-range

dependencies of the target node, which can lead to the oversight of

potentially crucial 1st-order heterogeneous neighbors or short-

range dependencies. To address this challenge and circumvent

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] rui wang, "LSRFN", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/g1xq-8j07. Accessed: Dec. 26, 2024.
@data{g1xq-8j07-24,
doi = {10.21227/g1xq-8j07},
url = {http://dx.doi.org/10.21227/g1xq-8j07},
author = {rui wang },
publisher = {IEEE Dataport},
title = {LSRFN},
year = {2024} }
TY - DATA
T1 - LSRFN
AU - rui wang
PY - 2024
PB - IEEE Dataport
UR - 10.21227/g1xq-8j07
ER -
rui wang. (2024). LSRFN. IEEE Dataport. http://dx.doi.org/10.21227/g1xq-8j07
rui wang, 2024. LSRFN. Available at: http://dx.doi.org/10.21227/g1xq-8j07.
rui wang. (2024). "LSRFN." Web.
1. rui wang. LSRFN [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/g1xq-8j07
rui wang. "LSRFN." doi: 10.21227/g1xq-8j07