Modern deep neural networks are overparameterized and thus require data augmentation techniques to prevent over-fitting and improve generalization ability. Generative adversarial networks (GANs) are famous for generating visually realistic images. However, the generated images lack diversity and have uncertain class labels. On the other hand, recent methods mix labels proportionally to the salient region.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Xiangyu Xiong, "Four Public Datasets for Explainable Medical Image Classifications", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/440a-dp26. Accessed: Dec. 06, 2024.
@data{440a-dp26-24,
doi = {10.21227/440a-dp26},
url = {http://dx.doi.org/10.21227/440a-dp26},
author = {Xiangyu Xiong },
publisher = {IEEE Dataport},
title = {Four Public Datasets for Explainable Medical Image Classifications},
year = {2024} }
TY - DATA
T1 - Four Public Datasets for Explainable Medical Image Classifications
AU - Xiangyu Xiong
PY - 2024
PB - IEEE Dataport
UR - 10.21227/440a-dp26
ER -
Xiangyu Xiong. (2024). Four Public Datasets for Explainable Medical Image Classifications. IEEE Dataport. http://dx.doi.org/10.21227/440a-dp26
Xiangyu Xiong, 2024. Four Public Datasets for Explainable Medical Image Classifications. Available at: http://dx.doi.org/10.21227/440a-dp26.
Xiangyu Xiong. (2024). "Four Public Datasets for Explainable Medical Image Classifications." Web.
1. Xiangyu Xiong. Four Public Datasets for Explainable Medical Image Classifications [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/440a-dp26
Xiangyu Xiong. "Four Public Datasets for Explainable Medical Image Classifications." doi: 10.21227/440a-dp26