The Machine Failure Predictions Dataset (D_2) is a real-world dataset sourced from Kaggle, containing 10,000 records and 14 features pertinent to IIoT device performance and health status. The binary target feature, 'failure', indicates whether a device is functioning (0) or has failed (1). Predictor variables include telemetry readings and categorical features related to device operation and environment. Data preprocessing included aggregating features related to failure types and removing non-informative features such as Product ID.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

Documentation: 
AttachmentSize
File Data_2-Documentation.pdf103.28 KB
[1] Anselme Herman EYELEKO, "Data_2", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/wxey-x422. Accessed: Jan. 21, 2025.
@data{wxey-x422-24,
doi = {10.21227/wxey-x422},
url = {http://dx.doi.org/10.21227/wxey-x422},
author = {Anselme Herman EYELEKO },
publisher = {IEEE Dataport},
title = {Data_2},
year = {2024} }
TY - DATA
T1 - Data_2
AU - Anselme Herman EYELEKO
PY - 2024
PB - IEEE Dataport
UR - 10.21227/wxey-x422
ER -
Anselme Herman EYELEKO. (2024). Data_2. IEEE Dataport. http://dx.doi.org/10.21227/wxey-x422
Anselme Herman EYELEKO, 2024. Data_2. Available at: http://dx.doi.org/10.21227/wxey-x422.
Anselme Herman EYELEKO. (2024). "Data_2." Web.
1. Anselme Herman EYELEKO. Data_2 [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/wxey-x422
Anselme Herman EYELEKO. "Data_2." doi: 10.21227/wxey-x422