Concept-1K is a novel dataset designed to facilitate research on incremental learning in large language models. It comprises 1,023 concepts represented as knowledge triplets, focusing on recently emerged topics to minimize data leakage. By providing a fine-grained approach to evaluating model performance, Concept-1K enhances the understanding of how these models learn and retain new information.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Junhao Zheng, "Concept-1K", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/xjhs-7121. Accessed: Feb. 17, 2025.
@data{xjhs-7121-24,
doi = {10.21227/xjhs-7121},
url = {http://dx.doi.org/10.21227/xjhs-7121},
author = {Junhao Zheng },
publisher = {IEEE Dataport},
title = {Concept-1K},
year = {2024} }
TY - DATA
T1 - Concept-1K
AU - Junhao Zheng
PY - 2024
PB - IEEE Dataport
UR - 10.21227/xjhs-7121
ER -
Junhao Zheng. (2024). Concept-1K. IEEE Dataport. http://dx.doi.org/10.21227/xjhs-7121
Junhao Zheng, 2024. Concept-1K. Available at: http://dx.doi.org/10.21227/xjhs-7121.
Junhao Zheng. (2024). "Concept-1K." Web.
1. Junhao Zheng. Concept-1K [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/xjhs-7121
Junhao Zheng. "Concept-1K." doi: 10.21227/xjhs-7121