CARRADA

Citation Author(s):
Ouaknine
Arthur
Submitted by:
Guowei Lu
Last updated:
Thu, 02/02/2023 - 03:13
DOI:
10.21227/7n2e-0415
Research Article Link:
License:
343 Views
Categories:
0
0 ratings - Please login to submit your rating.

Abstract 

High quality perception is essential for autonomous driving (AD) systems. To reach the accuracy and robustness that are required by such systems, several types of sensors must be combined. Currently, mostly cameras and laser scanners (lidar) are deployed to build a representation of the world around the vehicle. While radar sensors have been used for a long time in the automotive industry, they are still under-used for AD despite their appealing characteristics (notably, their ability to measure the relative speed of obstacles and to operate even in adverse weather conditions). To a large extent, this situation is due to the relative lack of automotive datasets with real radar signals that are both raw and annotated. In this work, we introduce CARRADA, a dataset of synchronized camera and radar recordings with rangeangle-Doppler annotations. We also present a semi-automatic annotation approach, which was used to annotate the dataset, and a radar semantic segmentation baseline, which we evaluate on several metrics. Both our code and dataset are available online.

Instructions: 

The CARRADA dataset is released under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License (“CC BY-NC-SA 4.0”)](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

Comments

 

 

Submitted by Mohan Bhujang Gavade on Wed, 11/13/2024 - 15:05

Documentation

AttachmentSize
File README.md3.1 KB