Bibliographic Analysis Data of Privacy Protection in AI Environment (1994 - 2023)

Citation Author(s):
Submitted by:
Shasha Yu
Last updated:
Thu, 10/05/2023 - 10:25
Data Format:
1 rating - Please login to submit your rating.


This paper conducts a systematic bibliometric analysis in the Artificial Intelligence (AI) domain to explore privacy protection research as AI technologies integrate and data privacy concerns rise. Understanding evolutionary patterns and current trends in this research is crucial. Leveraging bibliometric techniques, the authors analyze 3,061 papers from the Web of Science (WoS) database, spanning 1994 to 2023. The analysis highlights IEEE Transactions on Knowledge and Data Engineering and IEEE Access journals as highly influential, the former being an early contributor and the latter emerging as a pivotal source. The study demonstrates substantial disparities in scientific productivity across countries. Specifically, the top 10 countries collectively accounted for nearly 80% of the articles, with China and the USA making up more than half of the total contribution (51.6%). In contrast, regions in Africa and South America exhibited lower scientific production. The evolution of privacy preservation research is reflected, shifting from an algorithm-oriented approach to a focus on data orientation, and subsequently, to privacy solutions centered around Cloud Computing. In recent years, there has been a shift towards embracing Federated Learning and Differential Privacy. The analysis brings to light emerging themes and identifies research gaps, notably a global disparity in research output and a lag in ethical and legal inquiry. In detail, asserts that enhanced interdisciplinary collaboration is imperative to formulate comprehensive privacy solutions for AI. Specifically, the paper imparts invaluable insights that are pivotal for effectively addressing the evolving privacy concerns in the era of AI and big data.


This data set includes bibliographic data from 3,061 papers on the protection of privacy in AI environments from the Web of Science (WoS) database, spanning the years 1994 to 2023.