To deal with the issue of insignificant series arc fault characteristics in disturbing loads, this paper proposes a voltage-type series arc fault detection technique that utilizes a convolutional bidirectional long- and short-term memory neural network (CNN-BiLSTM) combined with the Keplerian optimization algorithm (KOA) and Attention Mechanism (AM).  Moreover, through experimental verifications, the accuracy of detecting experimental loads during the formation of series arc faults can exceed 99%, which demonstrate the effectiveness of the proposed method.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Qiwei Lu, "Arc fault detection data under different loads ", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/f6d2-8272. Accessed: Feb. 18, 2025.
@data{f6d2-8272-24,
doi = {10.21227/f6d2-8272},
url = {http://dx.doi.org/10.21227/f6d2-8272},
author = {Qiwei Lu },
publisher = {IEEE Dataport},
title = {Arc fault detection data under different loads },
year = {2024} }
TY - DATA
T1 - Arc fault detection data under different loads
AU - Qiwei Lu
PY - 2024
PB - IEEE Dataport
UR - 10.21227/f6d2-8272
ER -
Qiwei Lu. (2024). Arc fault detection data under different loads . IEEE Dataport. http://dx.doi.org/10.21227/f6d2-8272
Qiwei Lu, 2024. Arc fault detection data under different loads . Available at: http://dx.doi.org/10.21227/f6d2-8272.
Qiwei Lu. (2024). "Arc fault detection data under different loads ." Web.
1. Qiwei Lu. Arc fault detection data under different loads [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/f6d2-8272
Qiwei Lu. "Arc fault detection data under different loads ." doi: 10.21227/f6d2-8272