The dataset contains 2100 different observations each having 1099 absorption data points for different types of cells. The reflection absorption data were obtained from terahertz metamaterials on top of which the cells are placed. The 2100 observations made were for varying size specimen size and for four different types of cells

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Shruti ., Sasmita Pahadsingh, Bhargav Appasani, "Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/rwdm-7e75. Accessed: Sep. 16, 2024.
@data{rwdm-7e75-24,
doi = {10.21227/rwdm-7e75},
url = {http://dx.doi.org/10.21227/rwdm-7e75},
author = {Shruti .; Sasmita Pahadsingh; Bhargav Appasani },
publisher = {IEEE Dataport},
title = {Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials},
year = {2024} }
TY - DATA
T1 - Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials
AU - Shruti .; Sasmita Pahadsingh; Bhargav Appasani
PY - 2024
PB - IEEE Dataport
UR - 10.21227/rwdm-7e75
ER -
Shruti ., Sasmita Pahadsingh, Bhargav Appasani. (2024). Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials. IEEE Dataport. http://dx.doi.org/10.21227/rwdm-7e75
Shruti ., Sasmita Pahadsingh, Bhargav Appasani, 2024. Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials. Available at: http://dx.doi.org/10.21227/rwdm-7e75.
Shruti ., Sasmita Pahadsingh, Bhargav Appasani. (2024). "Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials." Web.
1. Shruti ., Sasmita Pahadsingh, Bhargav Appasani. Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/rwdm-7e75
Shruti ., Sasmita Pahadsingh, Bhargav Appasani. "Absorption Data for Cancer Detection Using Machine Learning and Terahertz Metamaterials." doi: 10.21227/rwdm-7e75