Image Processing

Endoscopy is a widely used clinical procedure for the early detection of cancers in hollow-organs such as oesophagus, stomach, and colon. Computer-assisted methods for accurate and temporally consistent localisation and segmentation of diseased region-of-interests enable precise quantification and mapping of lesions from clinical endoscopy videos which is critical for monitoring and surgical planning. Innovations have the potential to improve current medical practices and refine healthcare systems worldwide.

Last Updated On: 
Sat, 02/27/2021 - 05:11

This dataset contains light-field microscopy images and converted sub-aperture images. 

 

The folder with the name "Light-fieldMicroscopeData" contains raw light-field data. The file LFM_Calibrated_frame0-9.tif contains 9 frames of raw light-field microscopy images which has been calibrated. Each frame corresponds to a specific depth. The 9 frames cover a depth range from 0 um to 32 um with step size 4 um. Files with name LFM_Calibrated_frame?.png are the png version for each frame.

 

Categories:
626 Views

These three datasets cover Western, Chinese and Japanese food used for food instance counting and segmentation evaluation.

Categories:
693 Views

Since there is no image-based personality dataset, we used the ChaLearn dataset for creating a new dataset that met the characteristics we required for this work, i.e., selfie images where only one person appears and his face is visible, labeled with the person's apparent personality in the photo.

Categories:
3619 Views

We provide a dataset with synthetic white images for the Lytro Illum light field camera with precisely known microlens center coordinates.

The dataset consists of white images taken at different zoom settings as well as different microlens array offset and rotation.

The white images have been raytraced using a thin lens-based camera model. The synthesized white images incorporate natural as well as mechanical vignetting effects.

Categories:
544 Views

Calibration datasets used in the article Standard Plenoptic Cameras Mapping to Camera Arrays and Calibration based on DLT. These datasets were acquired with a Lytro Illum camera using two calibration grids with different sizes: 8 × 6 grid of 211 × 159 mm (Big Pattern) with approximately 26.5 mm cells, and 20×20 grid of 121.5 × 122 mm (Small Pattern) with approximately 6.1 mm cells. Each dataset acquired is composed of 66 fully observable poses of the calibration pattern.

Categories:
835 Views

Research on damage detection of road surfaces has been an active area of research, but most studies have focused so far on the detection of the presence of damages. However, in real-world scenarios, road managers need to clearly understand the type of damage and its extent in order to take effective action in advance or to allocate the necessary resources. Moreover, currently there are few uniform and openly available road damage datasets, leading to a lack of a common benchmark for road damage detection.

Categories:
4222 Views

The target scene consists of a black card with six cocoa beans of three different fermentation levels (High, correct, and low fermentation), two beans for each class, whose false-color composite is shown in the provided Figure (a), ground-truth map is shown in Fig. (b), and Fig. (c) presents its representative spectral signatures. The spectral image was acquired by the AVT Stingray F-080B camera by acquiring one band each time from  350 - 950 nm. The acquired image has a spatial resolution of 1096x712 pixels and 300 spectral bands of 2 nm width.

 

Categories:
814 Views

Pages