Machine Learning

This dataset is released with our research paper titled “Scene-graph Augmented Data-driven Risk Assessment of Autonomous Vehicle Decisions” (https://arxiv.org/abs/2009.06435). In this paper, we propose a novel data-driven approach that uses scene-graphs as intermediate representations for modeling the subjective risk of driving maneuvers. Our approach includes a Multi-Relation Graph Convolution Network, a Long-Short Term Memory Network, and attention layers.

Categories:
2847 Views

As an alternative to classical cryptography, Physical Layer Security (PhySec) provides primitives to achieve fundamental security goals like confidentiality, authentication or key derivation. Through its origins in the field of information theory, these primitives are rigorously analysed and their information theoretic security is proven. Nevertheless, the practical realizations of the different approaches do take certain assumptions about the physical world as granted.

Categories:
1296 Views

The Magnetic Resonance – Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures followed are consistent with the ethics of handling patients’ data.

Categories:
2524 Views

The Magnetic Resonance – Computed Tomography (MR-CT) Jordan University Hospital (JUH) dataset has been collected after receiving Institutional Review Board (IRB) approval of the hospital and consent forms have been obtained from all patients. All procedures followed are consistent with the ethics of handling patients’ data.

Categories:
1632 Views

The emerging 5G services offer numerous new opportunities for networked applications. In this study, we seek to answer two key questions: i) is the throughput of mmWave 5G predictable, and ii) can we build "good" machine learning models for 5G throughput prediction? To this end, we conduct a measurement study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by applications running on user equipment (UE).

Categories:
1587 Views

 Histopathological characterization of colorectal polyps allows to tailor patients' management and follow up with the ultimate aim of avoiding or promptly detecting an invasive carcinoma. Colorectal polyps characterization relies on the histological analysis of tissue samples to determine the polyps malignancy and dysplasia grade. Deep neural networks achieve outstanding accuracy in medical patterns recognition, however they require large sets of annotated training images.

Categories:
5148 Views

This dataset contains thousands of Channel State Information (CSI) samples collected using the 64-antenna KU Leuven Massive MIMO testbed. The measurements focused on four different antenna array topologies; URA LoS, URA NLoS, ULA LoS and, DIS LoS. The users channel is collected using CNC-tables, resulting in a dataset where all samples are provided with a very accurate spatial label. The user position is sweeped across a 9 squared meter area, halting every 5 millimeter, resulting in a dataset size of 252,004 samples for each measured topology.

Categories:
6414 Views

This study presented six datasets for DNA/RNA sequence alignment for one of the most common alignment algorithms, namely, the Needleman–Wunsch (NW) algorithm. This research proposed a fast and parallel implementation of the NW algorithm by using machine learning techniques. This study is an extension and improved version of our previous work . The current implementation achieves 99.7% accuracy using a multilayer perceptron with ADAM optimizer and up to 2912 giga cell updates per second on two real DNA sequences with a of length 4.1 M nucleotides.

Categories:
1439 Views

The boring and repetitive task of monitoring video feeds makes real-time anomaly detection tasks difficult for humans. Hence, crimes are usually detected hours or days after the occurrence. To mitigate this, the research community proposes the use of a deep learning-based anomaly detection model (ADM) for automating the monitoring process.

Categories:
799 Views

Pages