Machine Learning
In the realm of global agriculture, the imperative of sustaining an ever-expanding population is met with challenges in optimizing crop production and judicious resource management. SmartzAgri heralds a groundbreaking approach to modern agriculture. This innovative system represents a convergence of machine learning algorithms and Internet of Things (IoT) technology, aimed at reshaping traditional paradigms of crop recommendation.
- Categories:
Modern automotive embedded systems include a large number of electronic control units (ECU) responsible for managing sophisticated systems such as engine control, ABS brake systems, traction control, and power steering systems. To ensure the reliability and effectiveness of these functions, it is essential to apply rigorous test approaches and standards. The integration of diagnostic functions in automotive embedded systems demands consistent tests and a detailed analysis of data.
- Categories:
The major language used on social media platforms is primarily dialectal, posing unique challenges for Natural Language Processing. To address this, a large, manually annotated corpus of approximately 30,500 Saudi dialect tweets in the food delivery app domain was introduced. The corpus was annotated with positive, negative, and neutral sentiment categories. Additionally, the existing SauDiSenti lexicon was expanded by 30%, providing an improved resource for sentiment analysis in the Saudi dialect. the corpus and expanded lexicon have been evaluated using machine learning classifiers.
- Categories:
The LuFI-RiverSnap dataset includes close-range river scene images obtained from various devices, such as UAVs, surveillance cameras, smartphones, and handheld cameras, with sizes up to 4624 × 3468 pixels. Several social media images, which are typically volunteered geographic information (VGI), have also been incorporated into the dataset to create more diverse river landscapes from various locations and sources.
Please see the following links:
- Categories:
This dataset comprises comprehensive information on chemical compounds sourced from the PubChem database, including detailed descriptions for each compound. Each entry in the dataset includes unique PubChem Compound Identifiers (CIDs), molecular structures, physicochemical properties, biological activities, and associated descriptive metadata. The dataset is designed to support research in drug discovery, chemical informatics, and other fields requiring extensive chemical compound information.
- Categories:
Due to the difficulty in obtaining real samples and ground truth, the generalization performance and the fine-tuned performance are critical for the feasibility of stereo matching methods in real-world applications. However, the diverse datasets exhibit substantial discrepancies in disparity distribution and density, thus presenting a formidable challenge to the generalization and fine-tuning of the model.
- Categories:
The data generated during this research includes several distinct components aimed at enhancing the understanding and application of call graph visualization and design pattern detection. This data is housed in a publicly accessible repository and comprises the following elements:
- Categories: