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Abstract—The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) emergence began in late 2019 and has since
spread rapidly worldwide. The characteristics of respiratory
immune response to this emerging virus is not clear. Recently,
Single-cell RNA sequencing (scRNA-seq) transcriptome profiling
of Bronchoalveolar lavage fluid (BALF) cells has been done to
elucidate the potential mechanisms underlying in COVID-19.
With the aim of better utilizing this atlas of BALF cells in
response to the virus, here we propose a bioinformatics pipeline
to identify candidate biomarkers of COVID-19 severity, which
may help characterize BALF cells to have better mechanistic
understanding of SARS-CoV-2 infection. The proposed pipeline
is implemented in R and is available at https://github.com/
namini94/scBALF_Hackathon.
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I. INTRODUCTION

Globally, the outbreak of Coronavirus disease 2019
(COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has led to more than 233 million
infections and more than 4.7 million deaths according to
the statistics of World Health Organization (WHO) as of
October 1, 2021 [1], [2]. The clinical spectrum of COVID-
19 is broad: Many COVID-19 patients are asymptomatic
or experience only mild symptoms; however, some patients
progress to severe life-threatening conditions [2]. Accurate
classification of COVID-19 severity in patients may aid in
delivering proper healthcare and reducing mortality. Thus it
is of great importance to understand the underlying molecular
mechanisms of the disease and identify the biomarkers of the
illness severity accurately [3].

Single-cell RNA sequencing (scRNA-seq) is a powerful
tool at dissecting the cellular processes and characterizing
immune responses [2], [4]. Many groups have been applying
scRNA-seq to COVID-19 studies to better understand the
human immune response to the infection [2], [5], [6]. A recent
study performed scRNA-seq on Bronchoalveolar lavage fluid
(BALF) cells of patients with different COVID-19 severity
levels to characterize the respiratory immune properties asso-
ciated with COVID-19 severity [7].

To help better understand the inherent biological signals in
the recently published single-cell RNA-seq data from BALF
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cells [7] for COVID-19 severity prediction, we develop a
bioinformatics pipeline to first identify the COVID-19 severity
biomarker genes and then classify BALF cells using these
genes. We apply several classification algorithms, including
linear classifiers, such as Linear Discriminant Analysis (LDA),
and non-linear ones, such as Quadratic and Flexible Discrim-
inant Analysis (QDA and FDA [8]), Random Forests (RF) [9]
and Support Vector Machines (SVM), to evaluate our pipeline
in classifying BALF cells based on COVID-19 severity.

II. METHODS
A. Data Set

We have used the scBALF-COVID-19 dataset prepared for
the single-cell transcriptomics challenge of the IEEE COVID-
19 Data Hackathon. This dataset is derived from public data
[7] and contains a set of Broncho Alveolar Lavage Fluid
(BALF) cells from patients categorized clinically as having
mild, severe or no COVID-19 infection. In detail, the dataset
has scRNA-seq data of 23189 BALF cells from three classes
based on COVID-19 severity: mild infection (3292 cells),
severe infection (7919 cells), and no infection (11978 cells)
across 1999 genes. The dataset has been normalized for
technical differences between patients (batch normalization)
as well as sequencing depth differences between cells in each
patient. This normalization step, has removed the overdis-
persion inherent in typical scRNA-seq data. As a result, it
may not be beneficial to apply typical scRNA-seq tools for
biomarker identification and cell clustering on this normalized
data set, such as scVI [10], DESeq2 [11] and SimCD [4],
in which Negative Binomial (NB) distribution models and
their extensions were developed to model scRNA-seq data.
As shown in the histogram plot of normalized gene expression
values for a random gene “CXCR1” in the left plot of Fig 1,
normalized gene expression profiles across samples can be
approximated with a normal distribution.

B. Biomarker Identification

At the first step of our proposed pipeline, we detect
genes that are differentially expressed (DE) across cells with
different levels of COVID-19 severity. In order to do this
we perform three different sets of DE analyses, each time
as one label vs the rest (e.g. severe cells vs other cells).
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Fig. 1. Left: Histogram of normalized expression values for a random gene "CXCR1” across cells and an approximate Normal distribution shown with red
dashed lines. Middle & Right: Boxplots of normalized expression values for two of identified potential COVID-19 biomarkers, genes "GBP1” and "RSAD2”,

across different group of cells.

DE analyses are based on the R package Monocle [12]
designed specifically for scRNA-seq experiments with the
capability of handling normally distributed data. This can be
done by passing the argument expressionFamily to be
uninormal. In detail, what Monocle does for DE analyses
is fitting vector generalized linear models (VGLM) to both
full and reduced models and then computing likelihood ratio
Chi-squared statistics and corresponding p-values. After that,
for each of three analyses, we rank genes based on their
adjusted p-values in an increasing order. Then we report the
intersection of top 100 DE genes (also having lower adjusted
p-values) in all three DE analyses as COVID-19 severity
potential biomarkers.

C. Cell Classification Algorithms

After identifying the candidate genes as biomarkers to
classify BALF cells for COVID-19 infection severity, we run
various well-known classifiers, including both linear and non-
linear classifiers. We first run LDA as it assumes that pre-
dictors are normally distributed and that the different classes
have class-specific means and equal variance. Then we try
multiple non-linear classifiers, including QDA, FDA, RF and
SVM with the radial basis function (RBF) kernel to better
capture the non-linearity in the data. For LDA and QDA, we
use 1da and gda from the R package MASS. For FDA, we use
fda with the regression method to be multivariate adaptive
regression splines (MARS), from R package mda. For RF,
we use randomForest function from a R package with
the same name. We perform SVM with RBF, with the svm
from the R package e1071. Also, it worth mentioning that in
order to account for the imbalance in class labels we set the
option class.weights to be inverse so that weights
for samples with different class labels be chosen inversely
proportional to the corresponding class size.

III. RESULTS

In this section, we present the results of applying our
bioinformatics pipeline discussed in Sections II-B and II-C
to the BALF cell scRNA-seq data. First, we discuss the
biomarker identification results and then go over the results
of cell classification tools.

A. Biomarker Identification

After applying the DE analyses detailed in Section II-B,
we end up having 12 genes in the intersection set of top
100 DE genes in three sets of DE analyses performed by
Monocle: RSAD2, CXCLI10, IDOI1, GCHI, CXCLI1, CRYBA4,
CCL3, LGMN, IFIT1, CTSB, GBPI and CCL2. Half of these
genes (RSAD2, CXCL10, CXCLI11, CCL3, IFIT1, CCL2) have
been previously reported as genetic biomarkers for COVID-19
severity in a recent study that profiled the immune response
signatures in the BALF cells of eight COVID-19 cases [13].
The rest of the genes detected by our pipeline can be new
potential biomarkers for immune response to COVID-19 in
BALF cells. The middel and right box plots in Fig. 1 show
the normalized gene expression values of GBPI and RSAD?2,
two identified potential biomarkers by our pipeline. RSAD2
has been previously studied to be associated with respiratory
immune response severity in BALF cells but GBPI can be a
new potential biomarker.

B. Cell classification

After having the ranking lists of genes based on their
adjusted p-values in three sets of one class vs rest DE analyses,
we make three different sets of candidate gene features for cell
classification:

1) G1: Intersection of top 100 DE genes in all three

analyses,

2) G2: Intersection of top 100 DE genes in Normal cells

vs rest and Severe cells vs rest DE analyses,

3) G3: Union of top 100 DE genes in all three analyses.



TABLE I

AUC-ROC OF CLASSIFYING CELLS FOR ONE LABEL VS REST USING DISCRIMINANT ANALYSIS

Gene Set | Class | LDA QDA FDA SVM (RBF) RF

Sev vs Rest | 0.7644 + 0.0012  0.9615 4+ 0.0012  0.9778 £ 0.0007  0.9838 £ 0.0008  0.9912 + 0.0003
G1 Nor vs Rest | 0.7363 4 0.0008  0.9286 £ 0.0009  0.9387 £ 0.0008  0.9632 £ 0.0010 0.9782 + 0.0005
Mil vs Rest | 0.6201 4+ 0.0007  0.6882 4 0.0013  0.8256 & 0.0011  0.8670 £ 0.0009  0.9160 + 0.0006
Sev vs Rest | 0.8777 £ 0.0011  0.9771 4+ 0.0009  0.9992 £ 0.0005  0.9952 + 0.0005  0.9999 + 0.0001
G2 Nor vs Rest | 0.8350 4+ 0.0009  0.9092 £ 0.0006 0.9778 + 0.0008  0.9367 4 0.0008  0.9838 + 0.0005
Mil vs Rest | 0.6446 4+ 0.0010  0.7311 £ 0.0008  0.9369 £ 0.0008  0.8858 £ 0.0004  0.9627 £ 0.0005
Sev vs Rest | 0.8888 4+ 0.0007  0.9881 4 0.0006  0.9998 £ 0.0002  0.9999 £ 0.0001  0.9999 + 0.0001
G3 Nor vs Rest | 0.8475 £ 0.0023  0.9205 £ 0.0008  0.9965 + 0.0012  0.9913 4+ 0.0004  0.9957 + 0.0003
Mil vs Rest | 0.6917 £ 0.0004  0.8263 4+ 0.0007 0.9917 & 0.0002  0.9889 + 0.0008  0.9925 + 0.0004
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Fig. 2. Left: Venn Diagram of top 100 DE genes from the three sets of DE analyzes: Normal vs rest, Severe vs rest and Mild vs rest. Middle & Right:
ROC curves of different classification algorithms on gene set G1 when testing on classifying cells based on Normal vs rest and Severe vs rest.(Corresponding

to AUC-ROC values in top two rows of Table.1)

Applying these to our BALF scRNA-seq data, we find 12,
88 and 194 genes in the gene sets G1, G2 and G3 respectively.
Venn diagram of top 100 DE genes from the three sets of
DE analyzes is shown in left plot of 2. We then apply the
previously described classification algorithms in Section II-C
with the gene expression values from each of the gene sets
to classify cells. In order to measure the accuracy of each
classifier by each of three gene sets, we first randomly split
data to 75% and 25% of the total size of the available cell
samples to construct training and test sample sets. Then for
each gene set and each classifier, we train the classifier three
times (each time one label vs the rest) on the training set and
calculate area under Receiver Operator Characteristic (AUC-
ROC) values by testing the trained model on the test data.
In each case of label comparison, classification algorithm and
gene set, we run the code three times and then report the
average and standard deviations of AUC-ROC values.

Table I shows these AUC-ROC values for each of combi-
nations of running one of five different classifiers on three
gene sets. As it was expected, the linear classifier LDA has

the worst performance in comparison with non-linear ones.
Furthermore, as we expect, almost for all classifiers the AUC-
ROC is higher when using the gene set G3 comparing to other
two gene sets G1 and G2. Similar trends when comparing the
results using G2 vs G1. This is reasonable as the numbers
of genes (biomarkers/features) in the gene sets G2 and G3
are 7 and 16 times higher than the number of genes in the
gene set G1, respectively. Actually, the performance of RF,
SVM with the RBF kernel, and FDA on the gene set G1,
which only has 12 genes, show the practicality of our proposed
biomarker identification approach to detect COVID-19 severity
in BALF cells. Table I, also presents the superior performance
of the random forest classification algorithm on dissecting
BALF cells based on their COVID-19 severity. Also, it worth
mentioning that one can almost accurately classify BALF cells,
by running the RF algorithm on the proposed set of genes
from the biomarker identification step in our bioinformatics
pipeline.



IV. CONCLUSIONS

Due to the outbreak of COVID-19 infection across the world
and daily increasing number of mortality in the patients having
the infection, it is of great importance to better understand the
underlying biological mechanisms in human immune response
to this infection. As a result of this, here, we presented a
bioinformatics pipeline, capable of first, identifying potential
COVID-19 severity biomarkers in BALF cells and secondly,
accurately classifying cells based on the constructed set of
genes. The proposed pipeline is implemented in R and all
the codes are available in the Github page: https://github.com/
namini94/scBALF_Hackathon.
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