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Abstract—Compared to traditional focused transmissions,
plane wave (PW) ultrasound imaging could enable higher frame
rates by over a hundred fold, which is clinically relevant to
real-time applications and ultrafast imaging. However, along
with reducing acquisition time, PW imaging is confounded by
image quality degradation, acoustic clutter, and speckle noise. To
tackle this problem, we present a deep learning-based method
to analyze raw radiofrequency (RF) channel data acquired by
the ultrasound probe and convert this signal to the final B-
mode image, bypassing the traditional beamforming procedure.
The deep learning architecture relies on a conditional generative
adversarial network (cGAN), in which the generative model and
classifying model work simultaneously to produce an indistin-
guishable output from a ground truth. The cGAN was trained to
predict B-mode images that look like beamformed PW results
after multiple insonifications. This network was trained and
tested utilizing a publicly accessible PICMUS database composed
of in vivo and ex vivo ultrasound inclusions with randomly
distributed scatterers in various combinations. The proposed
method produces signal-to-noise ratio (SNR) enhancements from
1.112 to 1.540 when compared with conventional delay-and-
sum (DAS) beamforming of a single PW insonification. The
cross-correlation coefficient between a 75 plane wave image
and cGAN-predicted data is 0.976, compared to 0.641 with
DAS beamforming of a single PW insonification. These results
demonstrate the feasibility of using this adversarial network to
substitute traditional DAS beamforming in future applications.
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I. INTRODUCTION

Improving frame rates and image quality are two essential
components of medical ultrasound imaging improvements,
with much attention dedicated to plane wave ultrasound imag-
ing to maximize these criteria [1]. Compared to conventional
focused insonification, PW imaging achieves high frame rates
equal to thousands of images per second [2], which has
promising potential for electromechanical wave imaging, high
sensitivity Doppler imaging, and ultrasonic imaging of brain
activity [3]. However, the combination of plane wave imag-
ing and real-time imaging suffers from decreased resolution
and contrast, thus reducing overall image quality. Several
approaches have been attempted to eliminate the influence of
speckle noise and acoustic clutter such as coherent plane-wave
compounding [3]. In addition, minimum variance adaptive
beamformer [4] and short-lag spatial coherence (SLSC) [5]
have been explored to compensate image degradation and
improve image resolution.

In contrast to conventional model-based mathematical tech-
nologies there has been a growing interest to apply convo-
lutional neural networks (CNNs) to ultrasound beamforming.
This application has already shown promise in medical im-
age analysis with regard to feature extraction, classification,
and restoration. Perdios et al. [6] used CNNs to learn the
non-linear mapping between single and multiple plane wave
reconstructed data to enhance image quality following DAS
beamforming. To minimize latency and computational cost,
Nair et al. [2] trained a CNN model transforming raw RF
channel data to manually segmented mask, excluding DAS
and other post-processing methods (e.g., envelope detection,
log compression, and filter, interpreted in Fig. 1a). This work
has been expanded by simulating a single cyst in tissue
insonified by single PW and adding robot controlled ultra-
sound probe enabled volumetric reconstruction [7]. A GAN
was additionally explored as an ultrasound image formation
method to match a DAS beamformed B-mode image and
segment corresponding cyst from surrounding tissue [8]. In
addition, deep neural networks (DNNs) were employed to
obtain information directly from raw channel data and to
simultaneously generate both a segmentation map and B-mode
image for automated ultrasound tasks [9], [10].

In this paper, we demonstrate the use of a conditional gener-
ative adversarial network (cGAN) [11] for information trans-
lation from RF channel data directly to a B-mode ultrasound
image. Specifically, we utilize cGAN with two discriminators.
This adversarial network has already shown strong potential in
computer graphics including translating images from aerial to
map, or labels to facades. In this work, we employ RF channel
data as an input signal for cGAN-based alternative method and
evaluate the reconstruction results with the high quality image
given by multiple PW transmissions.

II. METHODS

A. Dataset

We pre-trained our neural network using 400 pairs of CMP
Facedes datasets [12] including the graphics transform from
cartoon architectural labels to real photos, shown in Fig. 1b.
Image pre-processing included grayscale conversion of colored
images. We augmented the pre-training data by applying vari-
ous geometric transformations (i.e., flipping, cutting, rotating)
to increase the diversity of the training data. The training
dataset was generated from 1500 single PW ultrasound images
from PICMUS [1] and the MATLAB ultrasound toolbox
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Fig. 1: (a) Overview of the proposed cGAN method to substitute conventional DAS beamforming. (b) Generator and
discriminator architecture of the proposed cGAN. Black arrows represent concatenation.

TABLE I: PWI Configuration Parameters

Parameter L11-4v

Element number 128

Pitch 300 µm

Center frequency 5.133 MHz

Bandwidth 67%

Element width 0.27 mm

Transmit frequency 5.208 MHz

Speed of sound 1540 m/s

Sampling frequency 20.832 MHz

(USTB) [13]. The configuration parameters are described in
Table I. To increase the robustness of our network, both
simulation and experimental ultrasound images were used
containing various distributions of 9 to 20 point scatters, 1 to
9 anechoic or hypoechoic cysts, or in vivo carotid longitudinal
or cross-sections.

The simulation inclusions were generated through Field
II [14], [15] and the transmission angle was zero degrees.
The experimental PICMUS data [1] were acquired with a
Verasonics Vantage 256 ultrasound system and a linear L11-4v
ultrasound probe. To further improve the network robustness
and avoid overfitting, -2 dB Gaussian white noise was added
to each single plane wave RF signal. 75 multi-plane wave
DAS beamformed images were used as ground truth images
for training. The ground truth images were post-processed
using the steps described in the Fig. 1(a) pipeline. All training
and ground truth images were normalized to the maximum
signal intensity. In addition, the training and ground truth
images were resized via downsampling and linear interpolation
from approximately 1500×128 to 256×256. The dataset was
divided into training (60%), validation (20%), and testing
(20%).

B. Network Architecture

The network architecture of cGAN is detailed in Fig. 1(b)
including one generator and two discriminators. The objective
of cGAN is to learn a nonlinear mapping from observed
images (x) and randomly distributed noise (z) to an output
image (y), given by the following equation.

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z)))]
(1)

The generator attempts to produce predicted images that are
close to the ground truth, such that the discriminator regards
the images as real rather than fake. In contrast to unconditional
GAN (uGAN) [16], cGAN has a symmetric network structure
and the input signal is evaluated both by the generator and
discriminator.

The architecture of the generator is based on U-Net [17],
which is widely applied in medical image segmentation. The
outline of the contraction path is composed of convolutional
layers, Batchnorm layers, and Leaky ReLU layers aimed at
capturing features. The expansive path contains transposed
convolutional layers, Batchnorm layers, Dropout layers, and
ReLU layers for precise localization. Furthermore, there is

Fig. 2: cGAN loss curve on a pretraining dataset



a concatenation between the mirrored encoder and decoder
blocks. The discriminator has an analogous design to the
contraction path. For each loop, the discriminator works twice
and calculates the corresponding cross-entropy loss between
the input, ground truth images, and generated images. We
compare its reconstruction accuracy when λ changes, where
L1 loss alone (λ = 0) produce blurry results.

The total loss of the cGAN is described by the equation:

Ltotal = LcGAN + λLL1 (2)

The initial value of λ was defined as 100 [11]. We applied
Adam optimization algorithm with 800 epochs for pre-training,
800 epochs for training, and 200 epochs for fine-tuning [18],
while the initial learning rate was 0.0002. The hardware
support was Google Colab GPU with TensorFlow while the
total runtime was 15 hours.

To illustrate the final reconstructed results, the network-
generated images were compared to the corresponding ground
truth images by calculating the mutual information, described
the equation:

I(X;Y ) = H(X,Y )−H(X|Y )−H(Y |X) (3)

where H(X) and H(Y ) are the marginal entropies, H(X|Y )
and H(X|Y ) are the conditional entropies. A high mutual
information indicates a strong correlation between the two im-
ages. In addition, we also assess the beamformed image quality

by calculating SNR, CNR, cross-correlation coefficient, and
joint entropy of a single CIRS phantom image and a single
in vivo image. For the CIRS phantom image, square regions
of interest (ROI) with 5 mm side length were chosen in the
center of the hyperechoic cyst for the target region with a
background ROI laterally offset to the right by 20 mm. For
the in vivo image, the target ROI was centered in the carotid
artery, and the background ROI was laterally offset to the right
by 15 mm.

III. RESULTS

A. B-mode image reconstruction

Fig. 2 shows the discriminator loss and the generator loss as
a function of the number of epochs for the pre-training dataset.
Because neither the generator nor the discriminator computes
the cross-entropy between predicted images and ground truth
images directly, they each tend to fluctuate competitively
along with epochs. As learning progresses, the total L1 loss
decreases.

Fig. 3(a-c) shows a single PW DAS beamformed image,
a 75 PW DAS image, and the cGAN-generated image for
the CIRS phantom, from left to right, respectively. Similarly,
Fig. 3(d-f) shows a single PW DAS beamformed image,
75 PW DAS image, and the cGAN-generated image for a
circular cross-section of an in vivo carotid artery, from left to

(a) (b) (c)

(d) (e) (f)

Fig. 3: B-mode images of (a-c) a CIRS phantom and (d-e) a carotid artery cross-section, produced with (a,d) a single plane
wave insonification and DAS beamforming, (b,e) 75 multiple plane wave insonifications and DAS beamforming, and (c,f) a
single plane wave insonification and the cGAN prediction. The target and background ROIs are outlined in red and blue,
respectively.



TABLE II: Image Evaluation Results

Test case Method CNR SNR
corr

coef

joint

entropy

mutual

information

Carotid
single DAS 0.404 0.715 0.698 13.415 0.620

multi DAS 1.565 1.558 1 6.652 6.652

cGAN 1.600 1.606 0.987 11.278 2.530

CIRS phantom

single DAS 2.733 1.509 0.583 13.977 0.447

multi DAS 1.594 1.463 1 7.138 7.138

cGAN 1.715 1.474 0.966 11.978 2.229

right, respectively. Formed with only 1 PW insonification, the
images generated by the cGAN present less clutter and other
artifacts in comparison to matched single PW DAS results.

B. Performance evaluation

The image quality of the single PW insonification DAS and
cGAN results were compared against the while multiple PW
DAS results, which were used as the ground truth. Results are
presented in Table II. Both in vivo and ex vivo RF channel
data achieve considerable enhancements with cGAN. The test
dataset required 452ms to generate one B-mode image of size
256×256.

IV. DISCUSSION & CONCLUSION

We presented an alternative approach to process raw RF
ultrasound PW channel data using conditional adversarial
networks. Compared to CNNs, cGAN employs two regressive
discriminators to compute the image relevancy, which is
more compatible to address complex information transfer. The
cGAN successfully learned the nonlinear mapping between
channel signal and high-quality B-mode PW images, without
further post-processing (e.g., delays computation, envelope de-
tection). We trained and tested our network with the PICMUS
PW dataset [1] containing experimental and simulated cysts,
resulting in cGANs that generated less artifacts with improved
correlation coefficients, while preserving details present in
DAS B-mode images created with multiple PW insonifica-
tions. The total computational cost and corresponding accuracy
both show the promise of using cGAN for future utilization,
such as ultrafast imaging, real-time robotic tracking, and in
vivo activity monitoring.
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