Derek Allman, Austin Reiter, Muyinatu Bell

Interventional applications of photoacoustic imaging typically require visualization of point-like targets, such as the small, circular, cross-sectional tips of needles, catheters, or brachytherapy seeds. When these point-like targets are imaged in the presence of highly echogenic structures, the resulting photoacoustic wave creates a reflection artifact that may appear as a true signal. We propose to use deep learning techniques to identify these type of noise artifacts for removal in experimental photoacoustic data.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Derek Allman, "Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset", IEEE Dataport, 2018. [Online]. Available: http://dx.doi.org/10.21227/H2ZD39. Accessed: Mar. 21, 2025.
@data{h2zd39-18,
doi = {10.21227/H2ZD39},
url = {http://dx.doi.org/10.21227/H2ZD39},
author = {Derek Allman },
publisher = {IEEE Dataport},
title = {Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset},
year = {2018} }
TY - DATA
T1 - Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset
AU - Derek Allman
PY - 2018
PB - IEEE Dataport
UR - 10.21227/H2ZD39
ER -
Derek Allman. (2018). Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset. IEEE Dataport. http://dx.doi.org/10.21227/H2ZD39
Derek Allman, 2018. Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset. Available at: http://dx.doi.org/10.21227/H2ZD39.
Derek Allman. (2018). "Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset." Web.
1. Derek Allman. Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset [Internet]. IEEE Dataport; 2018. Available from : http://dx.doi.org/10.21227/H2ZD39
Derek Allman. "Photoacoustic Source Detection and Reflection Artifact Deep Learning Dataset." doi: 10.21227/H2ZD39