This study seeks to obtain data which will help to address machine learning based malware research gaps. The specific objective of this study is to build a benchmark dataset for Windows operating system API calls of various malware. This is the first study to undertake metamorphic malware to build sequential API calls. It is hoped that this research will contribute to a deeper understanding of how metamorphic malware change their behavior (i.e. API calls) by adding meaningless opcodes with their own dissembler/assembler parts.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Ferhat Ozgur Catak, "Malware API Call Dataset", IEEE Dataport, 2019. [Online]. Available: Accessed: Jul. 18, 2024.
doi = {10.21227/crfp-kd68},
url = {},
author = {Ferhat Ozgur Catak },
publisher = {IEEE Dataport},
title = {Malware API Call Dataset},
year = {2019} }
T1 - Malware API Call Dataset
AU - Ferhat Ozgur Catak
PY - 2019
PB - IEEE Dataport
UR - 10.21227/crfp-kd68
ER -
Ferhat Ozgur Catak. (2019). Malware API Call Dataset. IEEE Dataport.
Ferhat Ozgur Catak, 2019. Malware API Call Dataset. Available at:
Ferhat Ozgur Catak. (2019). "Malware API Call Dataset." Web.
1. Ferhat Ozgur Catak. Malware API Call Dataset [Internet]. IEEE Dataport; 2019. Available from :
Ferhat Ozgur Catak. "Malware API Call Dataset." doi: 10.21227/crfp-kd68