SSADMO algorithm is proposed to study the optimal spatial trajectories of sea buckthorn fruit vibration separation. In this study, kinematics interpolation analysis of manipulator trajectories was carried out to compare the trajectories of cubic polynomials and quintic polynomial interpolation, and to compare the trajectories and attitudes of the manipulators under the condition of limited operating range and speed, in this paper, we propose a new SSADMO algorithm which combines the advantages of SSA and DMO optimization algorithms in the 3-5-3 polynomial interpolation.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

Documentation: 
AttachmentSize
File Data.pdf57.12 KB
[1] Bingqin Liang, "Standard study data", IEEE Dataport, 2023. [Online]. Available: http://dx.doi.org/10.21227/e174-1f44. Accessed: Jan. 13, 2025.
@data{e174-1f44-23,
doi = {10.21227/e174-1f44},
url = {http://dx.doi.org/10.21227/e174-1f44},
author = {Bingqin Liang },
publisher = {IEEE Dataport},
title = {Standard study data},
year = {2023} }
TY - DATA
T1 - Standard study data
AU - Bingqin Liang
PY - 2023
PB - IEEE Dataport
UR - 10.21227/e174-1f44
ER -
Bingqin Liang. (2023). Standard study data. IEEE Dataport. http://dx.doi.org/10.21227/e174-1f44
Bingqin Liang, 2023. Standard study data. Available at: http://dx.doi.org/10.21227/e174-1f44.
Bingqin Liang. (2023). "Standard study data." Web.
1. Bingqin Liang. Standard study data [Internet]. IEEE Dataport; 2023. Available from : http://dx.doi.org/10.21227/e174-1f44
Bingqin Liang. "Standard study data." doi: 10.21227/e174-1f44