Single-cell RNA sequencing (scRNA-seq) enables high-resolution analysis of cellular heterogeneity, but dropout events, where gene expression is undetected in individual cells, present a significant challenge. We propose \textbf{scMASKGAN}, which transforms matrix imputation into a pixel restoration task to improve the recovery of missing gene expression data.  Specifically, we integrate masking, convolutional neural networks (CNNs), attention mechanisms, and residual networks (ResNets) to effectively address dropout events in scRNA-seq data.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] You Wu, Li Xu, "scMASKGAN", IEEE Dataport, 2025. [Online]. Available: http://dx.doi.org/10.21227/faer-9862. Accessed: Mar. 16, 2025.
@data{faer-9862-25,
doi = {10.21227/faer-9862},
url = {http://dx.doi.org/10.21227/faer-9862},
author = {You Wu; Li Xu },
publisher = {IEEE Dataport},
title = {scMASKGAN},
year = {2025} }
TY - DATA
T1 - scMASKGAN
AU - You Wu; Li Xu
PY - 2025
PB - IEEE Dataport
UR - 10.21227/faer-9862
ER -
You Wu, Li Xu. (2025). scMASKGAN. IEEE Dataport. http://dx.doi.org/10.21227/faer-9862
You Wu, Li Xu, 2025. scMASKGAN. Available at: http://dx.doi.org/10.21227/faer-9862.
You Wu, Li Xu. (2025). "scMASKGAN." Web.
1. You Wu, Li Xu. scMASKGAN [Internet]. IEEE Dataport; 2025. Available from : http://dx.doi.org/10.21227/faer-9862
You Wu, Li Xu. "scMASKGAN." doi: 10.21227/faer-9862