Noise recognition plays an essential role in human-computer interaction and various technological applications. However, identifying individual speakers remains a significant challenge, especially in diverse and acoustically challenging environments. This paper presents the Enhanced Multi-Layer Convolutional Neural Network (EML-CNN), a novel approach to improve automated speaker recognition from audio speech. The EML-CNN architecture features multiple convolutional layers and a dense block, finely tuned to extract unique voice signatures from English speech samples.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

Documentation: 
AttachmentSize
File SPKINFO.txt382 bytes
[1] Farkhand Shahkeel, "Ph.D", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/1r2d-t222. Accessed: Mar. 18, 2025.
@data{1r2d-t222-24,
doi = {10.21227/1r2d-t222},
url = {http://dx.doi.org/10.21227/1r2d-t222},
author = {Farkhand Shahkeel },
publisher = {IEEE Dataport},
title = {Ph.D},
year = {2024} }
TY - DATA
T1 - Ph.D
AU - Farkhand Shahkeel
PY - 2024
PB - IEEE Dataport
UR - 10.21227/1r2d-t222
ER -
Farkhand Shahkeel. (2024). Ph.D. IEEE Dataport. http://dx.doi.org/10.21227/1r2d-t222
Farkhand Shahkeel, 2024. Ph.D. Available at: http://dx.doi.org/10.21227/1r2d-t222.
Farkhand Shahkeel. (2024). "Ph.D." Web.
1. Farkhand Shahkeel. Ph.D [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/1r2d-t222
Farkhand Shahkeel. "Ph.D." doi: 10.21227/1r2d-t222