Search-based software testing (SBST) is now a mature area, with numerous techniques developed to tackle the challenging task of software testing. SBST techniques have shown promising results and have been successfully applied in the industry to automatically generate test cases for large and complex software systems. Their effectiveness, however, has been shown to be problem dependent.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Neelofar Neelofar, "Instance Space Analysis of Search-Based Software Testing", IEEE Dataport, 2022. [Online]. Available: http://dx.doi.org/10.21227/febw-8f31. Accessed: Jun. 08, 2023.
@data{febw-8f31-22,
doi = {10.21227/febw-8f31},
url = {http://dx.doi.org/10.21227/febw-8f31},
author = {Neelofar Neelofar },
publisher = {IEEE Dataport},
title = {Instance Space Analysis of Search-Based Software Testing},
year = {2022} }
TY - DATA
T1 - Instance Space Analysis of Search-Based Software Testing
AU - Neelofar Neelofar
PY - 2022
PB - IEEE Dataport
UR - 10.21227/febw-8f31
ER -
Neelofar Neelofar. (2022). Instance Space Analysis of Search-Based Software Testing. IEEE Dataport. http://dx.doi.org/10.21227/febw-8f31
Neelofar Neelofar, 2022. Instance Space Analysis of Search-Based Software Testing. Available at: http://dx.doi.org/10.21227/febw-8f31.
Neelofar Neelofar. (2022). "Instance Space Analysis of Search-Based Software Testing." Web.
1. Neelofar Neelofar. Instance Space Analysis of Search-Based Software Testing [Internet]. IEEE Dataport; 2022. Available from : http://dx.doi.org/10.21227/febw-8f31
Neelofar Neelofar. "Instance Space Analysis of Search-Based Software Testing." doi: 10.21227/febw-8f31