The Garbage Image Dataset consists of images of garbage items collected from nearby localities using smartphones. The dataset is categorized into five different classes. Each category represents a specific type of garbage item commonly found in everyday waste. The purpose of the Garbage Image Dataset is to provide a collection of labelled images of garbage items from different categories. The dataset can be used to train and evaluate deep learning models for garbage classification tasks.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Mamta Bhamare, Manav Walunj, Yash Kangale, Kaustubh Jagtap, Kundan Walunj, Rashmi Apte, "Garbage Image Dataset", IEEE Dataport, 2024. [Online]. Available: http://dx.doi.org/10.21227/c0q8-nr65. Accessed: Jan. 13, 2025.
@data{c0q8-nr65-24,
doi = {10.21227/c0q8-nr65},
url = {http://dx.doi.org/10.21227/c0q8-nr65},
author = {Mamta Bhamare; Manav Walunj; Yash Kangale; Kaustubh Jagtap; Kundan Walunj; Rashmi Apte },
publisher = {IEEE Dataport},
title = {Garbage Image Dataset},
year = {2024} }
TY - DATA
T1 - Garbage Image Dataset
AU - Mamta Bhamare; Manav Walunj; Yash Kangale; Kaustubh Jagtap; Kundan Walunj; Rashmi Apte
PY - 2024
PB - IEEE Dataport
UR - 10.21227/c0q8-nr65
ER -
Mamta Bhamare, Manav Walunj, Yash Kangale, Kaustubh Jagtap, Kundan Walunj, Rashmi Apte. (2024). Garbage Image Dataset. IEEE Dataport. http://dx.doi.org/10.21227/c0q8-nr65
Mamta Bhamare, Manav Walunj, Yash Kangale, Kaustubh Jagtap, Kundan Walunj, Rashmi Apte, 2024. Garbage Image Dataset. Available at: http://dx.doi.org/10.21227/c0q8-nr65.
Mamta Bhamare, Manav Walunj, Yash Kangale, Kaustubh Jagtap, Kundan Walunj, Rashmi Apte. (2024). "Garbage Image Dataset." Web.
1. Mamta Bhamare, Manav Walunj, Yash Kangale, Kaustubh Jagtap, Kundan Walunj, Rashmi Apte. Garbage Image Dataset [Internet]. IEEE Dataport; 2024. Available from : http://dx.doi.org/10.21227/c0q8-nr65
Mamta Bhamare, Manav Walunj, Yash Kangale, Kaustubh Jagtap, Kundan Walunj, Rashmi Apte. "Garbage Image Dataset." doi: 10.21227/c0q8-nr65