This study investigates the optimization of cross-course learning paths in e-learning environments, addressing the challenge of navigating vast educational resources and aligning them with diverse learner needs. We propose a novel cross-course learning path planning model that integrates resources from multiple courses to tailor educational experiences to individual learner profiles. The model employs a modified affinity function, the item response theory (IRT), and a knowledge graph to effectively match learners' abilities with material difficulties and prerequisites.

Dataset Files

You must be an IEEE Dataport Subscriber to access these files. Subscribe now or login.

[1] Yong-Wei Zhang, "0000-0002-7732-4033", IEEE Dataport, 2024. [Online]. Available: Accessed: Jun. 14, 2024.
doi = {10.21227/kdv5-7m88},
url = {},
author = {Yong-Wei Zhang },
publisher = {IEEE Dataport},
title = {0000-0002-7732-4033},
year = {2024} }
T1 - 0000-0002-7732-4033
AU - Yong-Wei Zhang
PY - 2024
PB - IEEE Dataport
UR - 10.21227/kdv5-7m88
ER -
Yong-Wei Zhang. (2024). 0000-0002-7732-4033. IEEE Dataport.
Yong-Wei Zhang, 2024. 0000-0002-7732-4033. Available at:
Yong-Wei Zhang. (2024). "0000-0002-7732-4033." Web.
1. Yong-Wei Zhang. 0000-0002-7732-4033 [Internet]. IEEE Dataport; 2024. Available from :
Yong-Wei Zhang. "0000-0002-7732-4033." doi: 10.21227/kdv5-7m88